2-2

Polynials of Higher Degree

Even degree polynomials

Odd degree polynomials

$$
P(x)=a_{0} x^{n}+a_{1} x^{n-1}+a_{2} x^{n-2}+\ldots+a_{m} x^{n-m}+\ldots+a_{n-2} x^{2}+a_{n-1} x^{1}+a_{n}
$$

Leading coefficient test (even) - Leading coefficient test (odd) -

What is the minimum degree of each polynomial?

Determine the right and left hand behavior of the graph of each polynomial.
13) $f(x)=\frac{1}{3} x^{3}+5 x$
21) $h(t)=-\frac{2}{3}\left(t^{2}-5 t+3\right)$

Find all the real zeros of each function.
33) $f(x)=3 x^{2}-12 x+3$
35) $f(t)=t^{3}-4 t^{2}+4 t$

Find a polynomial function with the given zeros.
55) $\{1 \pm \sqrt{3}\}$

Sketch the graph of each function. (List all intercepts.)
65) $f(x)=x^{3}-3 x^{2}$

79) An open box is to be made from a square piece of material, 36 cm on a side, by cutting equal squares from the corners and turning up the sides.
a) Draw a figure to represent this scenario.
b) Use a graphing calculator to complete rows of the chart shown.

Height	Width	Volume
1		
2		

c) Write the volume of the box as a function of the height.
d) What size square corner results in the maximum volume of the box.

1-8 all, 14-22 even,
28-42 even, 48-56 even,
62-72 even, 80-83 all

